
Tales from 1002 Repositories: Development and
Evolution of Xtext-based DSLs on GitHub

Weixing Zhang 1, Daniel Strüber 1,2
1Chalmers | University of Gothenburg, Gothenburg, SE 2Radboud University, Nijmegen, NL

{weixing,danstru}@chalmers.se

Abstract—Domain-specific languages (DSLs) play a crucial role
in facilitating a wide range of software development activities in
the context of model-driven engineering (MDE). However, there
exists a significant gap in the systematic understanding of how
DSLs evolve over time, which could hamper the development
of effective methodologies and tools. To address this gap, we
performed a comprehensive investigation into the development
and evolution of textual DSLs created with Xtext, a particu-
larly widely used language workbench in the MDE community.
Through a systematic analysis of 1002 GitHub repositories,
we explore DSL development practices with an emphasis on
the involved artifact types, development scenarios, evolution
activities, and the co-evolution of related artifacts. We find that
the majority of analyzed languages were developed following a
grammar-driven approach, although a notable number adopt a
metamodel-driven approach. Additionally, we identify a trend of
retrofitting existing languages in Xtext, illustrating the frame-
work’s flexibility beyond the creation of new DSLs. Addressing
a need for large and systematically documented datasets in the
model-driven engineering community, we contribute a dataset of
repositories together with our collected meta-information, which
can be used to inform the development of improved tools for
supporting the development and evolution of DSLs.

Index Terms—Xtext, software evolution, DSLs

I. INTRODUCTION

Domain-specific languages (DSLs, [1]) are custom-tailored
software languages addressing a particular domain of ex-
pertise. By providing a tool to create models on a suitable
abstraction level, DSLs play an important role in model-driven
engineering (MDE, [2]), where models created using a DSL
can be used for a large variety of activities such as design,
analysis, code generation, and testing.

Developing a DSL is a high-stakes activity. Previous design
decisions often cannot be changed without significant effort on
the part of the language developers and users. Still, a need to
change the language may arise especially in the context of
language evolution, where the developers add new features or
respond to experience with the language [3]. In consequence,
there is a need for sound methods, practices, and techniques
for supporting the evolution of DSLs. However, to date, the
development of support for DSL evolution is typically driven
by the opinion of experts and individual cases encountered in
their own practice or experience reports—Thanhofer et al. [4]
provide a survey with 14 individual cases. Developers of future
evolution methods would benefit from systematic knowledge
about DSL evolution obtained from a larger number of cases.

To understand how MDE artifacts are developed and
evolved, there is a trend towards large-scale studies that sys-

tematically collect evidence from open-source software (OSS)
projects [5], [6], [7]. However, for development of DSLs in
the context of MDE, such a study is not available yet.

In this paper, towards closing this gap, we contribute the
first large-scale multiple-case study of DSL development and
evolution. Based on a repository mining methodology [8], we
collected and analysed data from 1002 GitHub repositories, to
answer questions about involved artifact types, development
scenarios, and evolution activities. Our study is focused on
textual DSLs, specifically those developed using the Xtext
framework [9], which is particularly widely used in the MDE
community, due to its rooting in the Eclipse ecosystem. Xtext
also serves as a blueprint for increasingly widely used DSL
workbenches such as textX (https://pypi.org/project/textX/)
and langium (https://langium.org/).

As part of our contribution, we provide a dataset [10] of
1002 repositories (via their URLs) together with our extracted
meta-data, e.g., the repository’s type, employed development
scenario, availability of various artifacts, and change statistics.
This dataset addresses need for large and consistently docu-
mented artifacts expressed in the MDE community [11], [12]
and can be particularly useful for follow-up research, both
to develop advanced (e.g., AI-based) techniques, as well as
supporting the identification of cases that can be used to inform
design and evaluation activities.

Specifically, we focus on the following research questions:
RQ1: Are there GitHub projects that use Xtext? Which are
these projects? We set out to investigate basic information
of Xtext-related activity in GitHub repositories. Our contri-
bution includes a manual classification of all repositories,
highlighting 228 repositories that include a worked-out and
well-documented language, which are particularly useful for
follow-up research such as our RQ2 and RQ3. We further
characterize the repositories based on application domains and
Xtext artifacts, which can aid the selection of comprehensive
examples for research and tool development purposes.
RQ2: Which development scenarios for Xtext-based languages
are applied in these projects? Xtext supports multiple de-
velopment scenarios that differ in their complexity (discussed
later). There is a question on whether complex development
scenarios such as meta-model-driven development are used in
practice and thus, need to be supported with dedicated ap-
proaches. Moreover, in the course of answering this question,
we discovered a trend of what we call retrofitting—creating
an Xtext grammar that fits an existing language.

https://pypi.org/project/textX/
https://langium.org/


RQ3: How do Xtext-based langages on GitHub evolve over
time? Since DSLs are often envisioned as "small" languages
[13], it is tempting to view their evolution as a non-issue. In
this RQ, we study longitudinal aspects of language projects,
including their longevity and amount of changes performed.
We highlight the existence of long-living language projects and
shed light on their proneness to significant changes, leading
to challenges that we discuss later, in Sect. VI of the paper.

II. BACKGROUND

Xtext. The development of DSLs is supported by a large
variety of existing workbenches [14]. In this paper, we focus
on the Xtext workbench [9], because we are interested in
language development in MDE contexts, which provides vari-
ous benefits for language development. First, the possibility to
apply a rich ecosystem of existing MDE tools and techniques
to the developed languages and their models. Second, support
for blended modeling [15], a rising paradigm in which several
different concrete syntaxes (e.g., graphical and textual) are
provided for the same underlying meta-model, which allows
the developers to choose one that fits best for the task at hand.
In an MDE context, Xtext is the most widely used technology
for textual DSL development, and naturally supports blended
modeling, since it involves the use of meta-models for abstract
syntax specification, and goes beyond meta-modeling by also
allowing to define a textual concrete syntax.

Xtext allows the specification of a textual DSL in terms of
an extended EBNF grammar, where the extensions are map-
pings of language elements to an underlying meta-model (in
EMF [16]). The metamodel specifies the language’s abstract
syntax (language concepts and their relations), whereas the
grammar specifies the concrete syntax (keywords, parenthe-
ses, nesting of elements) with the mapping to the abstract
syntax. From the provided specification, Xtext can automati-
cally generate comprehensive tool support, including a textual
editor with automated checks, syntax highlighting, and auto-
formatting. While Xtext is rooted in the Eclipse ecosystem,
adapters for other IDEs (e.g., IntelliJ) are available.

In our repository mining context, we identify grammars
and meta-models, as well as two additional artifact types, as
distinct file types. In Xtext-based DSL development, there
are the following four main MDE artifacts: 1) Xtext gram-
mar files, 2) Ecore metamodel files, 3) modeling workflow
engine (MWE) files, and 4) textual instance files. MWE files
support the orchestration of automated activities, in particular,
the generation of modeling components. Among others, they
define the file extension for textual instances (a.k.a. models
created using the language), which render them interesting for
our study of artifacts. Xtext files can be generated from Ecore
files, and conversely, Ecore files can also be generated from
Xtext files [9]. An MWE file is used to generate Xtext artifacts
from Xtext grammar [9], and these Xtext artifacts are used to
generate a textual editor for the DSL. Textual instance files
are edited in this textual editor.
Development Workflows and Scenarios. To specify a DSL’s
concrete and abstract syntax, Xtext uses two separate artifacts–

a grammar and meta-models—, which leads to the challenge of
keeping them synchronized with each other as the language
evolves. To this end, Xtext supports two main development
workflows [9]: In a grammar-driven scenario, the user pri-
marily edits the grammar, and has changes propagated to the
meta-model by completely re-generating it. In a metamodel-
driven scenario, the user primarily edits the meta-model.
After the changes to the meta-model, the grammar has to be
updated, which in the default process has to be done manually–
re-generating the grammar is not feasible due to potential
information loss about the concrete syntax.

Choosing an appropriate workflow requires to consider the
context in which the language is developed. The meta-model
driven workflow is useful in scenarios where the meta-model
has to be manually managed, e.g., when it is the center of
an already-existing ecosystem of tools, when it comes from
a third party vendor or standardization committee, or in a
blended modeling scenario with several concrete syntaxes. The
grammar-driven workflow is simpler to support and, therefore,
generally preferable in other scenarios.

III. RELATED WORK

DSL Evolution. The evolution of DSLs has been studied so far
with a focus on providing improved evolution support, and on
reporting individual cases of evolving DSLs. Both are studied
in a systematic mapping study of Thanhofer-Pilisch et al. [4],
the results of which can help researchers and practitioners
working on DSL-based approaches obtain an overview of
existing research on and open challenges of DSL evolution.
We now discuss selected cases with a particular focus on
industrial experiences. Mengerink et al. investigated the evo-
lution of DSLs in a large industrial MDSE ecosystem [17],
through which they summarized common evolution types and
evaluated the automation capabilities of evolution in real-life
scenarios. Schuts et al. reported in [18] their experience in
evolving a Philips-owned DSL, with the goal of enabling the
DSL to support a range of Philips systems. This is concrete
experience from the industry regarding the evolution of DSL.
DSL evolution generally leads to issues with keeping multiple
involved artifacts synchronized with each other [3]. In the
MDE community, a plethora of work on co-evolution problems
has evolved, in particular metamodel-model co-evolution [19],
[20], [21], where changes to the metamodel make evolution
of the associated models and transformations necessary. As
we discuss later, our dataset and results could inform the
development of new approaches in this area.

Mining. Due data availability and volume, GitHub has become
the data source of choice for repository mining research [22],
including those in model-driven engineering. In [6], Shrestha
et al. mined MATLAB/Simulink-related repositories and as-
sembled a large corpus of Simulink projects, which includes
model and project changes and allows redistribution. Men-
gerink et al. used software repository mining to create a large
corpus of OCL constraints [23]. Previous studies of EMF
metamodels focused on collecting EMF models from Eclipse



projects [24], studying the use of meta-modeling concepts in
GitHub projects [7], and on deriving a high-quality dataset for
machine learning [25]. Hebig et al. [5] investigated the use
of UML in OSS projects by systematically mining GitHub
projects. No previous study focused on Xtext-based DSLs in
GitHub repositories.

The only previous work that explicitly applied repository
mining to Xtext grammars (among other MDE artifacts) is
MAR, a search engine for models [26]. MAR offers a by-
example query mechanism for searching a database of 600K
models retrieved from existing repositories. While their un-
derlying dataset includes Xtext models from GitHub, it is
not annotated with the metadata offered in our dataset (e.g.,
number of instances, development scenario, evolution statis-
tics). Moreover, our research contribution and questions have
a different scope, focused on characterizing Xtext-specific
projects, with their development and evolution scenarios.

IV. METHODOLOGY

We now describe our used repository mining methodology
[22]. Like the previous work discussed above, our study was
focused on GitHub, the largest existing software repository
platform. Our overall process is divided into 6 steps. First, we
obtained a list of non-fork open-source repositories containing
Xtext files from GitHub. Second, we cloned all the retrieved
open-source repositories to a local hard drive to facilitate
access and information acquisition. Third, we searched for
relevant file types in these repositories by file extensions
and collected information about them. Fourth, we analyzed
the development scenario of each repository. Fifth, using the
repository-specific file extensions of the instances that we
identified from MWE files, we collected the instances of these
extensions and calculated information about them. Sixth, we
manually classified all obtained repositories, before analyzing
the collected data with respect to our research questions.
Step 1: Data Collection. We used the GitHub API to obtain
repositories that are related to Xtext. Since the most fundamen-
tal MDE artifact of an Xtext project is its grammar, which is
stored as a file with the extension .xtext, our search string
was based on the main clause q?=.xtext – that is, we
searched repositories that contain a file with that extension.
We later observed that this search string partially lead to the
identification of repositories that did not actually contain an
Xtext file, but were still related to Xtext in a different way, as
described below. Furthermore, to exclude repositories that are
forks of other repositories, as these might mostly replicate the
information from the original repositories and thus bias our
results, we set the parameter “fork" to “false".

One complication was that the GitHub API only allows
access up to 1,000 results, even when using the pagination
feature. However, from a trial search on the GitHub website,
we observed that the number of relevant repositories may
exceed 1,000. Hence, added a third parameter to the request,
which is the creation time of the repository. We use January
1, 2018, as the boundary to divide the request into two,
i.e., requesting results before that date and from that date.

We retrieved six pages with 576 repositories created before
January 1, 2018, and five pages with 426 repositories created
from this date, leading to a total of 1002 repositories.

We developed a Python script to complete the above work.
Its functions included setting request parameters, sending
requests, and dumping request results into local text files.
Execution of this script only took a few seconds to complete.
The rationale for developing a new script, instead of starting
from an existing dataset (e.g., [26]) was that it allowed us to
retrieve the most up-to-date information from GitHub and that
it naturally integrated with our remaining analysis activities.
The overall query used for the requests had the following form:

https://api.github.com/search/repositories?
q=.xtext+created:{since_date}..{stop_date}
+fork:false&page={page}&per_page=100

The repository information we obtained contains various
information about the repository, such as the repository’s ID,
name, whether it is private, owner, html_url, and description.
We developed another script to extract the name, owner’s
login, and html_url of these repositories from the text files
and store them in a table to facilitate subsequent data mining
and analysis. The result was a table containing 1002 rows.

Step 2: Repository Cloning. GitHub allows to obtain infor-
mation about GitHub repositories through the GitHub API.
However, GitHub has restrictions on the rate and frequency of
access. Since we in subsequent analysis needed to frequently
access different and large numbers of files, we decided to clone
all repositories to a local hard drive and further analyze the
local clones. We only cloned the master branch (except for
a few cases where master was empty, where we manually
identified a different main branch instead), leaving an analysis
of use of branching and pull request as future work.

Step 3: File Search. Given the local clones of the 1002
identified repositories, in Step 3, we identified their contained
grammars, meta-models, and workflow files, by searching for
files with the extensions “.xtext”, “.ecore”, “.mwe2”, respec-
tively. We recorded both the count of files, as well as additional
information. e.g., the directories in which files were found,
which we used in subsequent steps.

Step 4: Scenario Judgement. In Step 4, we determined which
the used language development scenarios in each repository.
Xtext supports two language development scenarios, described
in Sect. II. In the grammar-driven scenario, the text definition
of the Xtext grammar has a statement starting with the
keyword “generate", which results in generating a meta-model
from the grammar. When generating the metamodel, Xtext
automatically places the metamodel in a folder named “gener-
ated”. In the metamodel-driven scenario, language developers
create a metamodel in a folder they create. We assumed that
the developers do not name their created folders “generated”,
which would be counterintuitive. Considering that there may
be multiple Ecore files in a repository, we distinguished three
cases in which Ecore files existed in a repository: 1) All Ecore
files in the repository are in a folder named “generated", 2)
all the folders containing Ecore files in the repository are not



named “generated", and 3) some of the folders containing
Ecore files in the repository are named “generated" and some
are not. We classify the first situation as a grammar-driven
scenario, the second situation as a meta-model-driven scenario,
and the third situation refers to both scenarios.

Step 5: Instance Search. One Xtext artifact type we set out
to study was instances (models); yet, identifying instances is
non-trivial, as their file extension differs per language. We
identified instances by reading the file extension from the pre-
viously identified MWE files and then searching relevant files.
To check whether the found instances adhere to the grammar
in the same repository, we performed a sampling analysis:
we randomly selected ten repositories that contained both
grammar and instances and manually checked conformance.

Step 6: Classification. To give deeper insights into the
different kinds of Xtext-related repositories on GitHub, in
Step 6, we manually classified repositories into different types
and analyzed the frequency of different types. Our process
for this was as follows: First, one author manually labeled
a sample of 200 repositories with improvised labels. The
labels emerged from the observations that a few specialized
categories were recurring between the repositories, with proper
language projects (described below) being of most interest
for our study. Second, in a discussion between the authors,
the obtained labels were harmonized, by defining descriptions
and explicit criteria for them. Third, we labeled the complete
set of all repositories with the final set of labels. The final
labeling was done by one author and checked by another
author. Disagreements were resolved together.

The obtained list of types together with their descriptions
and criteria was as follows.
Language: A repository with proper, documented Xtext-based
language. Criterion: The README.md or “About” section
describes it as (implementation of) a language, or a software
system that incorporates a clearly identifiable language. Notes:
We also collected the language’s domain. After noticing that
several repositories re-implemented an existing language (a
phenomenon we call retrofitting), we also noted whether this
is a case for each repository.
Training/Examples: A repository serving the training of Xtext
users, usually in the form of an example, tutorial or both.
Criterion: The project’s README.md or “About” section
describes it as an example, a tutorial, or a demonstration.
Note: using the word "example" as part of the name was not
deemed as a useful criterion, as examples might be created for
experimental purposes—see below.
Infrastructure: A repository with tooling for supporting devel-
opment with Xtext. Criterion: The README.md or “About”
section suggests that the project is about supporting tooling.
Experimental/Personal: A repository that does not fall in any
of the above categories, but is still directly related to the
language workbench Xtext. Criteria: Any of the following
applies: 1. The contained grammar is extremely small and
basic. 2. The contained grammar is taken from a standard ex-
ample provided with Xtext. 3. The README.md and “About”

Lan
gu

ag
e

Tra
inin

g/E
xa

mple
s

Inf
ras

tru
ctu

re

Ex
pe

rim
en

tal
/Pe

rso
na

l

Unre
lat

ed
0

50

100

150

200

250

300

350

Nu
m

be
r o

f R
ep

os
ito

rie
s

228 215

110

343

106

Fig. 1. Classification of repositories.

section are empty or give no context information on what the
repository is about. 4. The README.md and “About” section
describes it as an assignment submission for a course, or as
an example for debugging purposes.
Unrelated: A repository unrelated to the language workbench
Xtext, except for naming. Criterion: The only connection to
the language workbench is sharing (parts of) the name.

V. RESULTS

This section presents the results of our investigation. In this
research, an ample amount of data is collected and analyzed,
mostly in an automated way, using scripts developed by the
authors. The resulting dataset (spreadsheet) and our analysis
scripts are available from the associated artifact [10].

RQ1: Xtext in GitHub Repositories. To overview the 1002
repositories identified via our search methodology, we show
the outcome of our manual classification, according to the
methodology explained in Section IV. As indicated in Fig-
ure 1, we found 228 repositories in which languages have been
developed and contain descriptions of them. There are 215
repositories with documented training and example materials.
110 repositories provide infrastructure to support development
with Xtext. Repositories classified as experimental/personal
are the most numerous, with 343 cases. Additionally, 106
repositories have no relationship to Xtext except for naming.

We illustrate the different categories with examples. Lan-
guages developed with Xtext span a large variety of cases,
from DSLs for specific application domains such as phys-
iotherapy exercises (Kinect-ECE-XText), telemedicine
(telemed), document management (Xarchive), to techni-
cal domains such as JSON schema (xtext-json), Quan-
tum computing (Quingo/compiler_xtext) and Eclipse
launch configurations (lcdsl). A noteworthy sub-category,
discussed in RQ2, are cases of retrofitting existing lan-
guages, such as GraphQL (graphQL-xtext-grammar),
or Oberon (Oberon-XText). Training/Example projects
comprise tutorials such as 15-minute Xtext tutorial in
Chinese (xtext_tutorial_15_min_zh). Infrastructure
projects include technology for integrating Xtext and par-
ticular languages in specific contexts, e.g, build processes
(gradle-xtext-generator) and editors (vim-xtext).
Experimental/personal code often involves a dump of the



TABLE I
FILE TYPE FREQUENCY IN PROJECTS CONTAINING XTEXT FILES.

Xtext Ecore MWE

#Files #Repo Perc. #Repo Perc. #Repo Perc.

>= 100 6 0.83% 6 0.83% 1 0.14%

10 - 99 19 2.63% 8 1.11% 19 2.63%

2 - 9 261 36.15% 108 14.96% 264 36.57%

1 436 60.39% 352 48.75% 410 56.79%

0 / / 248 34.35% 28 3.88%

user’s personal workspace (e.g. Xtext Workspace). Un-
related repositories generally result from a name clash, such
as using the name ‘xtext’ for some unrelated tool (e.g.,
resloved’s text displaying tool xtext), or within some
longer name, such as TopXTextUI.

With Xtext grammars being one of the core artifacts of Xtext
projects, we checked how many are contained in each repos-
itory. The results, shown in Table I, show that of these 1002
repositories, only 722 really contain at least one xtext file.
Unsurprisingly, nearly all repositories classified as language
contained an Xtext grammar—219 out of 228 cases. The nine
exceptions involved repositories that contained Xtext-based
editors for a particular language without providing the underly-
ing grammar, such as Palladio-Editors-VSCode, and
ports of originally Xtext-based DSLs to other workbenches,
such as eJSL-MPS [27].

For the 722 repositories that contain at least one Xtext
grammar file, Table I reports the numbers of other included
MDE artifacts. Of these repositories, 248 contain no Ecore
metamodel file, while 352 repositories contain one Ecore
metamodel file. A total of 6 repositories contain at least 100
Xtext and Ecore files each. All of these are infrastructure
projects that use a larger number of examples for testing and/or
demonstration purposes; three of them associated with the
official Xtext project. The relatively large number of projects
that contain an MWE file but no Ecore file can be explained by
the fact that in a grammar-driven scenario, Ecore files can be
fully automatically generated from the underlying grammar,
and it is a common practice to not commit automatically
generated artifacts to repositories.

Table II shows the results of identifying textual instances in
the 722 repositories that contain at least one Xtext grammar
file, 446 contain no textual instances at all, 103 contain only
one textual instance, and 173 repositories contain at least
two textual instances. Interestingly, we found two reposito-
ries containing more than 1000 textual instances, namely,
xtext/xtext-monorepo and eclipse/xtext, owned
by the Xtext team and the Eclipse Foundation, respectively.

As useful meta-information to inform the identification of
particularly widely used repositories, we collected the number
of forks and stars for all repositories and included them in our
dataset [10]. We found that 219 repositories had forks and 322
repositories had stars.

Results of RQ1: We find five categories of
repositories—language, training/examples, infrastruc-
ture, experimental/personal and unrelated. A total of
722 repositories contain one or several xtext grammar
files. About two-thirds of them contain at least one
Ecore metamodel file.

RQ2: Development Scenarios. To answer RQ2, on devel-
opment scenarios for language development, we specifically
focused on those repositories classified as language and judged
their development scenarios as described in Section IV, lead-
ing to the results shown in Table III.

There are a total of 228 repositories classified as language,
the majority of them (i.e. 169) are in a grammar-driven
scenario, and 66 of them have developed an Xtext version
of an existing language. 41 of the 200 repositories are in a
metamodel-driven scenario, and 6 of them have developed
an Xtext version of an existing language. Nine of these
228 repositories contain both grammar-driven and metamodel-
driven scenarios, and none of them have developed an Xtext
grammar for any existing language. Additionally, the nine
repositories that were classified language but did not contain
Xtext files (described in the results for RQ1), were not suitable
for our analysis and hence excluded from it.

We give selected examples for the identified metamodel-
driven cases since it is arguably the more complex sce-
nario, involving manual overhead for keeping meta-models
and grammars synchronized. megal-xtext provides a tex-
tual syntax for the MegaL mega-modeling language, a lan-
guage that by design provides several concrete syntaxes
[28], a typical motivation for the metamodel-driven scenario.
Kotlin-Meta-Model is a repository with the main claim
of providing a meta-model for the Kotlin JVM language;
the provided Xtext grammar is mentioned as an additional
artifact. Other repositories such as QuestionnaireDSL do
not include a definite explanation for following the metamodel-
driven scenario, but at least contain a visualization for the
metamodel (aird file), which indicates an intention to explicitly
design the metamodel. Repositories classified as both generally
comprise several languages with different workflows, e.g.,

TABLE II
INSTANCES IN REPOSITORIES THAT CONTAIN XTEXT GRAMMARS.

Count of Instances #Repos Percentage
>= 1000 2 0.28%

100 - 999 10 1.39%
10 - 99 31 4.29%

2 - 9 130 18.00%
1 103 14.27%
0 446 61.77%

TABLE III
FREQUENCY OF LANGUAGE DEVELOPMENT SCENARIOS.

Scenario #Repos #Retrofitting
grammar-driven 169 66

metamodel-driven 41 6
both 9 0

not applicable 9 2



telemed with separate languages for information storage and
querying of telemedicine information.

A noteworthy activity that our manual classification of
repositories brought forward is retrofitting: the implemen-
tation of some existing language in Xtext. We found 74
cases of repositories that can be classified as such. In sev-
eral cases, repositories included implementations of popu-
lar practical languages, e.g., GraphQL for graph database
querying (graphQL-xtext-grammar), JSON Schema for
schema definition (JSON-Schema-to-internal-DSL),
and PlantUML for lightweight UML diagram creation
(plantuml-eclipse-xtext). The added value of an
Xtext implementation for these languages is to benefit from
the editing support offered by Xtext, e.g., automated code
completion, syntax highlighting, and formatting. A few cases
were concerned with historical programming languages and
could be seen as an enthusiastic effort (e.g., Oberon-IDE).

The majority of retrofitting cases was developed in a
grammar-driven way, which is consequential: The concrete
syntax in these cases is fixed and hence, it is natural to specify
a grammar matching the existing syntax, thus retrofitting it.

Results of RQ2: While the majority of Xtext-based
language development projects involve the grammar-
driven scenario, a nonnegligible number relies on
the metamodel-driven one. We identify retrofitting—
creating an Xtext implementation of an existing
language—as a noteworthy development activity.

RQ3: Evolution of MDE Artifacts in Xtext-Based Projects.
To investigate how languages and their artifacts evolve, we
focused again on the 228 repositories classified as ‘language’.

We were interested in longevity of language projects and the
activity around their included grammars. To study this aspect,
we focused on those language-classified repositories that con-
tained a grammar, leading to 219 repositories. We observed
a time span for updates of the repository and the contained
grammar. The time span is calculated as the difference in days
between the first and the last commit. We obtained the results
shown in Table IV. The results show that 43 repositories were
never updated after they were created, while 36 repositories
had updates spanning more than 1,000 days, meaning that
they were still maintained after a substantial amount of time.

TABLE IV
TIMESPANS OF COMMITS IN REPOSITORIES AND XTEXT FILES.

Repo Xtext

Timespan (Days) #Repo Perc. #Repo Perc.

>= 1000 36 16.43% 18 8.22%

100 - 999 55 25.11% 43 19.63%

10 - 99 59 26.94% 44 20.09%

1 - 9 26 11.87% 29 13.24%

0 43 19.63% 85 38.81%

TABLE V
AVERAGE CHANGE TO NUMBER OF LINES AND RULES WHEN COMPARING

FIRST AND LAST COMMITED VERSION OF XTEXT GRAMMAR.

Avg. Change to #Lines #Repos Percentage
< 0 4 5.02%
0 78 35.62%

> 0 and <= 10 27 12.33%
> 10 and <= 100 68 31.05%

> 100 and <= 1000 33 15.07%
> 1000 2 0.91%

Avg. Change to #Rules #Repos Percentage
> 100 3 1.37%

<= 100 and > 10 46 21%
<= 10 and > 0 65 29.68%

= 0 91 41.55%
< 0 14 6.39%

Considering the time span of updates to the grammar included
in the projects, there are many (i.e. 85) repositories where
Xtext files are never updated after they are initially created.
There is also a nonnegligible number (i.e. 18) of repositories
that still have records of updating Xtext grammar files after a
long time (no less than 1000 days).

We were further interested in how much Xtext grammars
change over time. To this end, we considered both the changes
to the overall number of lines and the number of rules. Starting
with the number of lines, for those 219 repositories that
contain at least one Xtext grammar file and are classified as
language, we compared the first and the last committed version
of the Xtext files in terms of their line counts, reporting the
averages per repository in Table V. We can see that the number
of lines of text for Xtext grammar has not changed in 35.62%
of the repositories. For those repositories that have changed,
the vast majority of them contain Xtext grammar files that have
basically added the number of lines of text. Among them, the
average increased line number of Xtext grammar files in 35
repositories by more than 100.

We also analysed the changes in the number of grammar
rules in the Xtext grammar file, leading to the results shown in
Table V. We can see that in more than 40% of the repositories,
the number of grammar rules in the Xtext grammar has not
changed. Part of the reason is that 66 repositories have not
updated their Xtext files since they were initially committed.
For those repositories where the number of rules of the Xtext
grammar changed, in most of them the number of rules
increased over time. In particular, the average number of
added grammar rules in the Xtext grammar contained in 47
repositories exceeds ten.

Our dataset [10] contains additional metadata quantify-
ing evolution activities, specifically, the change frequency of
grammars, metamodels, and instances per project. While a
detailed analysis is outside the scope of this paper, we observe
the following trends: As one would expect, grammars are
updated more often than meta-models. However, the difference
in update frequency is more pronounced in the grammar-
driven workflow than in the metamodel-driven one, which
might suggest that users in this workflow spend more time
polishing concrete syntax aspects. Instances are more likely to
be updated in repositories with more Xtext grammar updates.



Results of RQ3: We find a spectrum of project and
language development lifespans of Xtext projects on
GitHub, with a nonnegible part (8%) of grammars still
being updated 1000 days after the initial commit. The
amount of change performed in individual languages can
be significant, with more than 10 rules being added in
22% of all languages.

VI. DISCUSSION

Need for approaches for co-evolution in textual DSL evo-
lution contexts. Our analysis in RQ3 reveals the existence of
DSL evolution projects that are maintained over several years
and involve significant changes to the language over time. In
such projects, challenges arise from the synchronized evolution
of all involved artifacts, including grammars, meta-models,
instances, and workflow files. In a general MDE context, syn-
chronized evolution is a well-studied area, termed co-evolution
or coupled evolution. A plethora of existing work [29], [30],
[31], [32], [33], [34], [35] provides foundational approaches
for managing co-evolution between meta-models and other
artifacts, typically models and transformations. However, there
remains a significant gap in tool support and methodologies
specifically tailored to the co-evolution of artifacts involved in
textual DSLs developed with frameworks like Xtext, with their
focus on both meta-models and grammars. To address some
of the complexity in the meta-model-driven scenario (RQ2),
one could rely on principles from the grammarware sphere
and support an operator-based approach to grammar evolution
[36]. In our recent work, we follow up on this idea to automate
parts of the synchronization of the grammar after meta-model
changes [37], [38], [39], [40], [41]. Another open challenge
is grammar-instance co-evolution, which could benefit from
the available foundational approaches for metamodel-model
co-evolution, but needs to deal with concrete syntax aspects
of grammars. This problem has not been addressed yet in the
technical space of Xtext. Lämmel’s LAL approach [42] could
be useful for validating a solution that addresses it.

Future research should focus on integrated approaches and
tools that facilitate the simultaneous evolution of all related
DSL artifacts. The comprehensive dataset compiled from our
study, particularly the 196 cases where all crucial artifacts such
as grammar, metamodel, and instances are available, presents a
valuable resource for developing new co-evolution approaches,
by supporting their design, testing and evaluation.

Follow-up studies investigating change types and scopes.
Our comprehensive dataset paves the way for follow-up
studies on language development and evolution, particularly
by expanding on RQ2 and RQ3 to analyse the changes to
projects at a finer level of detail. Future research should
perform additional analysis of the specific patterns of evolution
that languages undergo, identifying common trajectories and
deviations in their lifecycle, which would expand on earlier
studies focused on a single project or ecosystem, such as those
discussed in Sect. III. Moreover, an under-explored area is

the extent to which the features provided by frameworks like
Xtext are utilized or underused within real-world projects. Like
Babur et al.’s study [7] for the case of Ecore metamodels,
such investigations can uncover valuable insights into the
actual needs and practices of language engineers, leading
to more targeted improvements in language workbenches.
Additionally, examining the types of changes—whether they
pertain to syntax, semantics, tooling, or documentation—can
shed light on the multifaceted nature of DSL evolution and
the challenges it poses. This deeper understanding can inform
the development of better support tools and methodologies,
ultimately fostering more robust and adaptable languages.

Threats to validity. Threats to internal validity arise from
us relying on the GitHub API. Since we cannot access the
implementation of the GitHub API, we cannot verify complete-
ness: the implementation could be inexact, which could lead to
repositories not being captured by our query. As a safeguard,
we checked whether a total of three expected repositories
personally known to us appeared in our results, which was
the case. Nevertheless, anecdotally, a colleague to whom we
made available our dataset informed us about a project that was
not part of it. Still, our findings that arise from a substantial
number of cases and highlight the existence of understudied
phenomena—meta-model-based evolution, retrofitting, long-
living Xtext projects–do not require completeness to be valid.

Furthermore, repositories can be duplicates of each other,
which might bias the results. For our language-classified
repositories, which we investigate in RQ2 and RQ3, we
checked that this is not the case and can exclude duplicates.
For the experimental/personal category, which generally does
not make any statements about the quality about the included
repositories, anecdotally, some repositories have the same
contents as others, potentially arising from having followed
the same tutorial with the basic Xtext examples.

Considering external validity, our scope is restricted to
GitHub and Xtext, both being particularly popular and widely
used technologies in their respective communities. There is a
larger variety of existing language workbenches [14], not all
of which might equally benefit from our findings. The results
from our study could be transferable to other workbenches
that use a similar strategy for separating abstract and concrete
syntax specification like Xtext, such as textX and langium.
Yet, transferring our results to language workbenches that
employ an entirely different paradigm (e.g., in the case of
MPS, projectional editing) might be infeasible.

Considering construct validity, to mitigate the impact of
subjectivity on our classification, we extensively discussed the
criteria and problematic cases and eventually found consensus
for all of them. Our classification further relies on documen-
tation provided by the repository owners, which might not
always be accurate or complete, leading two consequences:
First, we did not investigate whether repositories were from
industry or academia, which generally was not possible to
tell from the documentation. Second, some of our language-
classified repositories, in particular, among those classified as



retrofitting, might be exclusively intended for self-teaching
or demonstration purposes, but this context is unavailable to
us. Users of our dataset are advised to use it in a way that
makes sure that their assumptions are met, for example, taking
into account our collected change history meta-information to
identify cases with a rich evolution history.

VII. CONCLUSION

In our analysis of 1002 GitHub repositories, we found
that the majority of our considered languages are developed
following a grammar-driven approach, albeit a notable num-
ber adopt a metamodel-driven approach. We observed long-
running projects with numerous changes, highlighting the
diversity in DSL development and the need for tools and
methodologies that can accommodate different scenarios. The
trend of retrofitting existing languages in Xtext showcases its
flexibility beyond creating new DSLs. Our dataset supports
further research into DSL evolution and the development of
methods to facilitate this evolution.

Future work will investigate our dataset further to uncover
more insights and study detailed evolution patterns, particu-
larly in Xtext constructs and code artifacts. We also aim to
develop better methods for synchronizing artifacts in evolution
scenarios, especially co-evolution between a grammar and its
instances, a gap not addressed by current solutions.

REFERENCES

[1] T. Kosar, S. Bohra, and M. Mernik, “Domain-specific languages: A
systematic mapping study,” IST, vol. 71, pp. 77–91, 2016.

[2] T. Stahl and M. Völter, Model-driven software development: technology,
engineering, management, 2006.

[3] R. Lämmel, Software Languages, 2018.
[4] J. Thanhofer-Pilisch, A. Lang, M. Vierhauser, and R. Rabiser, “A

systematic mapping study on DSL evolution,” in SEAA, 2017, pp. 149–
156.

[5] R. Hebig, T. H. Quang, M. R. V. Chaudron, G. Robles, and M. A.
Fernandez, “The quest for open source projects that use UML: mining
GitHub,” in MODELS, 2016, p. 173–183.

[6] S. L. Shrestha, A. Boll, S. A. Chowdhury, T. Kehrer, and C. Csallner,
“Evosl: a large open-source corpus of changes in simulink models &
projects,” in MODELS, 2023, pp. 273–284.

[7] Ö. Babur, E. Constantinou, and A. Serebrenik, “Language usage analysis
for EMF metamodels on GitHub,” Empirical Software Engineering,
vol. 29, no. 1, p. 23, 2024.

[8] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “The promises and perils of mining GitHub,” in MSR,
2014, pp. 92–101.

[9] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend, 2016.

[10] W. Zhang and D. Strüber, “Dataset for ’Tales from
1002 Repositories: Development and Evolution of Xtext-
based DSLs in GitHub Projects’,” 2024. [Online]. Available:
https://osf.io/348qg/?view_only=94e940c6359d4374badd81374358f4fd

[11] G. Robles, M. R. Chaudron, R. Jolak, and R. Hebig, “A reflection on
the impact of model mining from GitHub,” IST, vol. 164, p. 107317,
2023.

[12] C. D. N. Damasceno and D. Strüber, “Quality guidelines for research
artifacts in model-driven engineering,” in MODELS, 2021, pp. 285–296.

[13] A. V. Deursen and P. Klint, “Little languages: little maintenance?” JSEP,
vol. 10, no. 2, pp. 75–92, 1998.

[14] S. Erdweg, T. Van Der Storm, M. Völter, L. Tratt, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh et al., “Evaluating
and comparing language workbenches: Existing results and benchmarks
for the future,” COMLAN, vol. 44, pp. 24–47, 2015.

[15] I. David, M. Latifaj, J. Pietron, W. Zhang, F. Ciccozzi, I. Malavolta,
A. Raschke, J.-P. Steghöfer, and R. Hebig, “Blended modeling in
commercial and open-source model-driven software engineering tools:
A systematic study,” SoSyM, vol. 22, no. 1, pp. 415–447, 2023.

[16] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: eclipse
modeling framework, 2008.

[17] J. G. Mengerink, B. van der Sanden, B. C. Cappers, A. Serebrenik, R. R.
Schiffelers, and M. G. van den Brand, “Exploring DSL evolutionary
patterns in practice: a study of DSL evolution in a large-scale industrial
DSL repository,” in MODELSWARD, 2018, pp. 446–453.

[18] M. Schuts, M. Alonso, and J. Hooman, “Industrial experiences with the
evolution of a DSL,” in DSM, 2021, pp. 21–30.

[19] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,” in
ECOOP, 2007, pp. 600–624.

[20] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “COPE-automating
coupled evolution of metamodels and models,” in ECOOP, 2009, pp.
52–76.

[21] R. Hebig, D. E. Khelladi, and R. Bendraou, “Approaches to co-evolution
of metamodels and models: A survey,” IEEE TSE, vol. 43, no. 5, pp.
396–414, 2016.

[22] G. Gousios and D. Spinellis, “Mining software engineering data from
GitHub,” in ICSE Companion, 2017, pp. 501–502.

[23] J. G. Mengerink, J. Noten, and A. Serebrenik, “Empowering OCL re-
search: a large-scale corpus of open-source data from github,” Empirical
Software Engineering, vol. 24, pp. 1574–1609, 2019.

[24] S. Kögel and M. Tichy, “A dataset of EMF models from Eclipse
projects,” 2018.

[25] J. A. H. López, J. L. Cánovas Izquierdo, and J. S. Cuadrado, “ModelSet:
a dataset for machine learning in model-driven engineering,” SoSyM, pp.
1–20, 2022.

[26] J. A. H. López and J. S. Cuadrado, “An efficient and scalable search
engine for models,” SoSyM, vol. 21, no. 5, pp. 1715–1737, 2022.

[27] D. Priefer, W. Rost, D. Strüber, G. Taentzer, and P. Kneisel, “Applying
MDD in the content management system domain,” SoSyM, vol. 20, no. 6,
pp. 1919–1943, 2021.

[28] J.-M. Favre, R. Lämmel, and A. Varanovich, “Modeling the linguistic
architecture of software products,” in MODELS, 2012, pp. 151–167.

[29] J. García, O. Diaz, and M. Azanza, “Model transformation co-evolution:
A semi-automatic approach,” in SLE, 2012, pp. 144–163.

[30] D. E. Khelladi, H. H. Rodriguez, R. Kretschmer, and A. Egyed, “An
exploratory experiment on metamodel-transformation co-evolution,” in
APSEC, 2017, pp. 576–581.

[31] A. Kusel, J. Etzlstorfer, E. Kapsammer, W. Retschitzegger,
W. Schwinger, and J. Schönböck, “Consistent co-evolution of
models and transformations,” in MODELS, 2015, pp. 116–125.

[32] S. Vaupel, D. Strüber, F. Rieger, and G. Taentzer, “Agile bottom-up
development of domain-specific IDEs for model-driven development,”
in FlexMDE, 2015, pp. 12–21.

[33] W. Kessentini and V. Alizadeh, “Interactive metamodel/model co-
evolution using unsupervised learning and multi-objective search,” in
MODELS, 2020, pp. 68–78.

[34] D. Di Ruscio, A. Di Salle, L. Iovino, and A. Pierantonio, “A modeling
assistant to manage technical debt in coupled evolution,” IST, vol. 156,
p. 107146, 2023.

[35] D. Di Ruscio, L. Iovino, and A. Pierantonio, “A methodological ap-
proach for the coupled evolution of metamodels and ATL transforma-
tions,” in ICMT, 2013, pp. 60–75.

[36] V. Zaytsev et al., “Negotiated grammar evolution,” JOT, vol. 13, no. 3,
pp. 1–22, 2014.

[37] W. Zhang, R. Hebig, D. Strüber, and J.-P. Steghöfer, “Automated
extraction of grammar optimization rule configurations for metamodel-
grammar co-evolution,” in SLE, 2023, pp. 84–96.

[38] W. Zhang, J. Holtmann, D. Strüber, R. Hebig, and J.-P. Steghöfer,
“Supporting meta-model-based language evolution and rapid prototyping
with automated grammar transformation,” JSS, vol. 214, 2024.

[39] W. Zhang, J.-P. Steghöfer, R. Hebig, and D. Strüber, “A rapid prototyping
language workbench for textual DSLs based on Xtext: Vision and
progress,” arXiv preprint arXiv:2309.04347, 2023.

[40] W. Zhang, “Towards automated support for the co-evolution of meta-
models and grammars,” Licentiate Thesis, University of Gothenburg,
Sweden, 2023.

[41] W. Zhang, R. Hebig, J.-P. Steghöfer, and J. Holtmann, “Creating
python-style domain specific languages: A semi-automated approach and
intermediate results.” in MODELSWARD, 2023, pp. 210–217.

[42] R. Lämmel, “Coupled software transformations—revisited,” in SLE,
2016, pp. 239–252.

https://osf.io/348qg/?view_only=94e940c6359d4374badd81374358f4fd

	Introduction
	Background
	Related Work
	Methodology
	Results
	Discussion
	Conclusion
	References

